-
1 réduction de la surface boisée
разрушение лесного покрова
—
[ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]EN
forest cover destruction
Destruction of forests is carried out in many countries in order to provide new land for agricultural or livestock purposes. It is often done without factors such as climate and topography having been sufficiently studied and on lands where slope nature of the soil or other physiographic characteristics clearly indicate that the land involved is suitable only for forest. Although these practices may lead to a temporary increase in productivity, there are also many indications that in the long run there is usually a decrease in productivity per unit of surface and that erosion and irreversible soil deterioration often accompany this process. Many factors contribute to forest cover destruction: timber production, clearance for agriculture, cutting for firewood and charcoal, fires, droughts, strip mining, pollution, urban development, population pressures, and warfare. (Source: WPR)
[http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]Тематики
EN
DE
FR
Франко-русский словарь нормативно-технической терминологии > réduction de la surface boisée
-
2 érosion par l'eau
водная эрозия
—
[ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]EN
water erosion
The breakdown of solid rock into smaller particles and its removal by water. As weathering, erosion is a natural geological process, but more rapid soil erosion results from poor land-use practices, leading to the loss of fertile topsoil and to the silting of dams, lakes, rivers and harbours. There are three classes of erosion by water. a) Splash erosion occurs when raindrops strike bare soil, causing it to splash, as mud, to flow into spaces in the soil and to turn the upper layer of soil into a structureless, compacted mass that dries with a hard, largely impermeable crust. b) Surface flow occurs when soil is removed with surface run-off during heavy rain. c) Channelized flow occurs when a flowing mixture of water and soil cuts a channel, which is then deepened by further scouring. A minor erosion channel is called a rill, a larger channel a gully. (Source: ALL)
[http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]Тематики
EN
DE
FR
Франко-русский словарь нормативно-технической терминологии > érosion par l'eau
-
3 courant admissible, m
(длительный) допустимый ток
Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
[ ГОСТ Р МЭК 60050-826-2009]
Этот ток обозначают IZ
[ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]EN
(continuous) current-carrying capacity
ampacity (US)
maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
[IEV number 826-11-13]
ampacity
The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
[National Electrical Cod]FR
courant (permanent) admissible, m
valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
[IEV number 826-11-13]Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:
- its insulation temperature rating;
- conductor electrical properties for current;
- frequency, in the case of alternating currents;
- ability to dissipate heat, which depends on cable geometry and its surroundings;
- ambient temperature.
Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.
The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.
In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.
Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.
The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.
For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.
Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.
When designing an electrical system, one will normally need to know the current rating for the following:- Wires
- Printed Circuit Board traces, where included
- Fuses
- Circuit breakers
- All or nearly all components used
Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.
[http://en.wikipedia.org/wiki/Ampacity]
Тематики
- электротехника, основные понятия
Синонимы
EN
DE
- Dauerstrombelastbarkeit, f
- Strombelastbarkeit, f
FR
- courant admissible, m
- courant permanent admissible, m
Франко-русский словарь нормативно-технической терминологии > courant admissible, m
-
4 courant permanent admissible, m
(длительный) допустимый ток
Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
[ ГОСТ Р МЭК 60050-826-2009]
Этот ток обозначают IZ
[ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]EN
(continuous) current-carrying capacity
ampacity (US)
maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
[IEV number 826-11-13]
ampacity
The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
[National Electrical Cod]FR
courant (permanent) admissible, m
valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
[IEV number 826-11-13]Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:
- its insulation temperature rating;
- conductor electrical properties for current;
- frequency, in the case of alternating currents;
- ability to dissipate heat, which depends on cable geometry and its surroundings;
- ambient temperature.
Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.
The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.
In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.
Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.
The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.
For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.
Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.
When designing an electrical system, one will normally need to know the current rating for the following:- Wires
- Printed Circuit Board traces, where included
- Fuses
- Circuit breakers
- All or nearly all components used
Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.
[http://en.wikipedia.org/wiki/Ampacity]
Тематики
- электротехника, основные понятия
Синонимы
EN
DE
- Dauerstrombelastbarkeit, f
- Strombelastbarkeit, f
FR
- courant admissible, m
- courant permanent admissible, m
Франко-русский словарь нормативно-технической терминологии > courant permanent admissible, m
-
5 décharge de déchets dangereux
свалка опасных отходов
—
[ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]EN
hazardous waste dump
Disposal facilities where hazardous waste is placed in or on land. Properly designed and operated landfills are lined to prevent leakage and contain systems to collect potentially contaminated surface water run-off. (Source: PARCOR / WPR)
[http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]Тематики
EN
DE
FR
Франко-русский словарь нормативно-технической терминологии > décharge de déchets dangereux
См. также в других словарях:
run — 1 /rVn/ verb past tense ran past participle run present participle running MOVE QUICKLY ON FOOT 1 (I) to move quickly on foot by moving your legs more quickly than when you are walking: I had to run to catch the bus. | Two youths were killed when … Longman dictionary of contemporary English
Surface Detail — … Wikipedia
Surface (serie televisee) — Surface (série télévisée) Pour les articles homonymes, voir Surface (homoymie). Surface Titre original Surface Genre Série fantastique Créateur(s) Jonas et Josh Pate Pays d’origine … Wikipédia en Français
Run — Run, v. i. [imp. {Ran}or {Run}; p. p. {Run}; p. pr. & vb. n. {Running}.] [OE. rinnen, rennen (imp. ran, p. p. runnen, ronnen). AS. rinnan to flow (imp. ran, p. p. gerunnen), and iernan, irnan, to run (imp. orn, arn, earn, p. p. urnen); akin to D … The Collaborative International Dictionary of English
Run — Run, v. i. [imp. {Ran}or {Run}; p. p. {Run}; p. pr. & vb. n. {Running}.] [OE. rinnen, rennen (imp. ran, p. p. runnen, ronnen). AS. rinnan to flow (imp. ran, p. p. gerunnen), and iernan, irnan, to run (imp. orn, arn, earn, p. p. urnen); akin to D … The Collaborative International Dictionary of English
Run — Run, v. i. [imp. {Ran}or {Run}; p. p. {Run}; p. pr. & vb. n. {Running}.] [OE. rinnen, rennen (imp. ran, p. p. runnen, ronnen). AS. rinnan to flow (imp. ran, p. p. gerunnen), and iernan, irnan, to run (imp. orn, arn, earn, p. p. urnen); akin to D … The Collaborative International Dictionary of English
run — [run] vi. ran or Dial. run, run, running [altered (with vowel prob. infl. by pp.) < ME rinnen, rennen < ON & OE: ON rinna, to flow, run, renna, to cause to run (< Gmc * rannjan); OE rinnan, iornan: both < Gmc * renwo < IE base * er … English World dictionary
Run length limited — or RLL coding is a technique that is used to store data on recordable media. Specifically, RLL prevents long stretches of repeated bits from causing the signal recorded on media to not change for an excessive period, by modulating the data. RLL… … Wikipedia
Run rig — Run rig, or runrig, was a system of land occupation practised in northern and western Great Britain, especially Scotland. The name refers to the ridge and furrow pattern characteristic of this system (and some others), with alternating runs… … Wikipedia
Surface feet per minute — (SFM or SFPM) is a unit of velocity used in machining to identify the machinability ratings of a material.SFM is the velocity around the tool or the material measured in feet per minute as the spindle of a lathe turns. The faster the spindle… … Wikipedia
run-off — ► NOUN 1) a further contest after a tie or inconclusive result. 2) rainfall or other liquid that drains away from the surface of an area … English terms dictionary